
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

An Integrative Approach to Information Extraction
Sumit Gupta

Abstract— Huge amount of information is hidden within unstructured text. This information is often best exploited in structured or relational

form, which is suited for many applications including Information Extraction. Information Extraction is the task of automatically extracting

structured information from a given set of information thus producing a well-defined categorized data from unstructured machine readable

information. Here, we exploit the idea of integrating Inductive Logic Programming approach and Bayesian Logic Programs for extracting

information more efficiently.

Index Terms— Bayesian Logic Programs, Conditional Random Fields, Hidden Markov Models, Inductive Logic Programming, Information

Extraction, Machine Learning.

—————————— ——————————

1 INTRODUCTION

O understand the concept of Machine Learning, one must
understand the idea of Deduction and Induction. Deduc-
tion is basically a system of logic, inference and conclusion

drawn from examination of facts. These are the conclusions
drawn from the general domain to the specific domain. While,
on the other hand, the Induction is the basis of Machine Learn-
ing. It is to induce something from given facts and figures. In
other words, reasoning from detailed facts to general princi-
ples. We use Inductive Logic Programming which uses logic
programming as a uniform representation in the form of
background knowledge and hypothesis. Given a set of posi-
tive examples, negative examples and background knowledge
of the given domain, the ILP system will generate a theory or a
set of rules by producing a logic program which covers all the
positive examples and ignoring the negative examples. Thus,
Positive examples + Negative Examples + Background
Knowledge Hypothesis (Theory). The ability to provide
Background knowledge to the learning engine is one of the
strengths of ILP.

ILP approaches usually use languages based on logic pro-

gramming, a subset of “First Order Logic”, which is helpful in
solving versatile problems having relational characteristics
between various entities as opposed to propositional logic
which is declarative, context independent and has limited ex-
pressive power.

Taking an example, suppose we are given the sentence,

“The water is in the bottle”. In this sentence, the answer to the
question, when asked to a real person: Where is the water?
would simply be “In the bottle”. Humans have power to sort
out the relations between objects (or entities). But we have to
teach a computer to identify the relations between the entities
using some additional data. This additional data is the various
parameters which are inputs to the ILP implementation for
generating a theory. Based on that theory, a computer can, to a
great extent, answer whether there is a relation between two
entities or not. This problem comes under the Information

Extraction domain of Machine Learning. The program scans
the input sentence to identify the relevant objects in that sen-
tence and thus producing the relations based on the theory.
The ILP provides the following features which helps in solv-
ing the problem more efficiently:

 Provides a way to incorporate domain knowledge
 Produces logical clauses for suitable analysis
 Helps in Relational learning

2 PROBLEM STATEMENT

In a sentence, the question of relation between two words is of
utter importance. An intelligent system which can, on provid-
ing the test data, tell whether there is existence of any relation
between the words or not is a challenging task. For instance,
consider the statement: “He saw a can”. Here, the word ‘can’
may refer to a noun or a verb. Since the natural languages are
ambiguous, the problem of extracting the exact information
becomes difficult. In this paper, we integrate ILP approach
with Bayesian Logic Programs and find out how Conditional
Random Fields have advantage over Hidden Markov Models.

3 INDUCTIVE LOGIC PROGRAMMING AND ALEPH

Given an encoding of the known background knowledge and
a set of examples represented as a logical database of facts, an
ILP system will derive a hypothesis which entails all the posi-
tive examples and no negative example. Consider a set of ex-
amples E which contains two mutually exclusive sets of posi-
tive examples E+ and negative examples E–. The ILP system
(Aleph in our case) generates a Hypothesis H which covers
every example in the set E+ and does not covers any example
of the set E–. Considering a simple example:

sibling(X, Y) parent(X, Z), parent(Y, Z)

Now for a machine to understand this relation we must give
the set of positive and negative examples along with the back-
ground knowledge to the machine which is shown in the fol-
lowing table.

T

————————————————

 Sumit Gupta is currently working with Hewlett-Packard in Bengaluru,
India, PH +91 9686495248. E-mail: sumit.gupta2@hp.com

1810

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

TABLE – 1: ILLUSTRATION OF INPUT TO ILP SYSTEM

Positive and Negative

Examples

Background Knowledge

sibling(Sam,Mark) +

sibling (Jack, Bob) +

sibling (Sam, Jack) –

sibling(Bob, Mark) –

sibling (Sam, Bob) –

sibling (Jack, Mark) –

parent(Sam, Ana)

parent(Jack, Alice)

parent(Mark, Ana)

parent(Bob, Alice)

Here ‘+’ denotes the positive examples and ‘–’ denotes the
negative examples. Aleph is an ILP system developed in
Prolog. The set of positive examples is presented to this pro-
gram in “.f” file and the set of negative examples in “.n” file in
a specified format. The background knowledge is presented in
the “.b” file. The program has internal algorithm which re-
solves the relationship between the determination predicate
and the determining predicate to generate a general theory.
For the above example, the body contains predicates: parent
(X, Y). The concept which needs to be defined is sibling,
whose positive examples are present in “.f” file and negative
examples in “.n” file.

4 APPROACH

We used the Gold Standard Dataset as the training data. It
contains huge amount biological data in the form of sentences.
Our goal is to find out the relation between two words (genes
in our case) and use those relations to train our system. In the
dataset, the interactions are given in the form of predicates
which can easily be identified. The dataset contains infor-
mation including the predicates for word IDs, the syntactic
relations and the genic Interactions between the words. The
end of a sentence is recognized by a full stop. The sentences
are then processed by Genia Tagger to tag the various parts of
speech. The output of the Genia Tagger is then collected in a
file which is called the Tagged File. The tagged file contains
five columns including the actual word itself, the 1st form of
the verb of that word and the part of speech (PoS). It also in-
cludes information that whether the word is the starting word
of a particular phrase or comes in between. For e.g. B-NP
stands for the word which begins a noun phrase while I-VP
stands for the verb which is not in the beginning of a verb
phrase but lies somewhere in between. This tagged file is the
training data used in the process.

We used Java programming language to generate the re-
quired files: background knowledge (.b), positive examples
(.p) and negative examples (.n). The processing is divided into
6 steps which are explained in the next section. The approach
is illustrated in Figure 1.

5 FRAMING THE PROBLEM AS AN ILP PROBLEM

Our training dataset is biological. Various genes interact
with one another and thus become related. Thus this relation
becomes the basis for our machine to learn. For our dataset,
the positive examples are the examples wherein there is an
interaction between two genes. The negative examples are all
the interactions which are not positive and not in the same
phrase and the predicates are the relations possible between
two words or phrases. Based on these training data, a theory is
generated by Aleph. The whole process is dived into 6 steps
which finally generates the Positive Example file (.p file), Neg-
ative Example file (.n file), predicates or background
knowledge along with the final theory. Following are the 6
steps:

Step 1. Standardization of the Tagged file

The input file is standardized to a file (called the standardized
file) in which each word of a sentence can be uniquely identi-
fied by an identifier. The identifier is of the form
sentX_phY_wZ, where X, Y and Z are the sentence number,
phrase number and word number respectively. For example,
sent6_ph3_w2 identifies the 2nd word in 3rd phrase of 6th sen-
tence. The index of each sentence, phrase and word starts with
a zero. There are no identifiers for punctuation marks (open-
ing and closing braces, comma, full stop, hyphen etc.).

Step 2. Syntactic Relations in standardized format

All the syntactic relations from the Gold standard dataset are
extracted and they are mapped with the standardized tagged
file to get the syntactic relations between words in standard
format.

Step 3. Generation of predicates

For an ILP system, we require to encode the background in-
formation into a form which the system can understand and
process. Predicates are part of such encoding. Few of the pred-
icates are shown in Table 2 and in Figure 2.

TABLE – 2: BACKGROUND KNOWLEDGE OR PREDICATES

Predicates describing the relations between words and phrases. Words and

phrases are described using IDs e.g. wID1, pID

1

2

3

4

5

word_next(wID1, wID2)

phrase_next(pID1, pID2)

np_segment(pID)

phrase_child(pID, wID)

noun(wID)

wID2 is next to the word wID1

pID2 is next to the word pID1

pID is a noun phrase

pID contains wID

wID is a noun

Fig. 1 Approach

1811

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Step 4. Positive Example Generation

A Positive example is a set of two nouns for which the genic
interaction exists. These examples are listed in the gold stand-
ard dataset as genic_interaction(wID1, wID2). Mapping the
word ID to the word in the gold standard data set produces
the positive example file (.f file).

Step 5 and 6. Negative Example Generation

Negative example is a set of two nouns for which genic inter-
action doesn’t exists. Subtracting the positive examples from
all possible combination of the nouns in the phrases generates
the negative example file (.n file).

Final Step. Theory Generation Phase

All the files (.p .n and .b) are fed into the ILP system and thus
generating the theory (figure 3).

6 RESULTS USING INDUCTIVE LOGIC PROGRAMMING

We tested the theory generated on 100 random documents
from the Gold Standard Dataset and found that the theory
generating 56% accurate results. The theory generated might
not be as much as accurate as we required due to overtraining

or ambiguity of the natural languages. To get enhanced accu-
racy, we combine Inductive Logic Programming approach
with Statistical Modeling.

7 STATISTICAL MODELING TO ENHANCE RESULTS –

BAYESIAN LOGIC PROGRAMS

Using the Statistical Methods, we improve the theory generat-
ed in the last phase. Statistical Methods help us in analyzing
the Syntactic structure of a sentence. Consider the sentence
“Ram used a peg”. Now we are interested in analyzing the syn-
tactic structure as it helps in determining the meaning. We
construct a syntactic structure in the form of a tree, tagging
each part of the sentence with the part of speech. This struc-
ture if formed using a grammar. The system may take the
word ‘peg’ in the following two ways (also shown in figure 4).

 Noun – a wooden pin
 Verb – occupying a position

To determine the part of speech of ‘peg’ is this sentence statis-
tically, we can model the problem using two approaches of
Bayesian Logic Programs: Hidden Markov Models (HMMs)
and Conditional Random Fields (CRFs). We will use both
approaches and determine the efficiency of in combination to
the ILP approach.

7.1 Part of Speech (PoS) tagging

In the natural language processing, this is the task of labeling
each word by its part-of-speech tags. This done with assigning
an appropriate part-of-speech tag along with the original tag
stored systematically machine readable format. For example,

Ram[Noun] goes[Verb] to[Preposition] college[Noun].

7.1.1 Part of Speech (PoS) tagging using HMMs

HMMs are a form of generative model, that defines a joint
probability distribution p(X,Y) where X and Y are random
variables respectively ranging over observation sequences
and their corresponding label sequences. Here, we want to
develop a HMM that attempts to assign part of speech tags to
English text. To train a HMM, we will assume that we have a
large set of training data that is a sequence of words and a

Fig. 2. Background knowledge predicates

Fig. 3. Theory Generation Phase showing genic interactions be-
tween words

Fig. 4. Two possible ways in which a sentence can be tagged. N:
noun; V:verb; VP:verb phrase; NP:noun phrase; Art:article;

S:sentence

1812

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

parallel sequence of part of speech tags. Once the HMM is
trained, we use it to tag other sentences. Consider a HMM
with starting state s1. It accepts (or emits) w1 and goes to state
s2, accepts (or emits) w2 and goes to state s3 and so on. Now
consider the probability that the sequence w1,n occurs is the
probability of all possible paths through the HMM that can
produce this sequence. That is,

P(w1,n) = ∑ P(w1,n, s1,n+1) (eqn.1)

 s1,n+1

Using the eqn.1, we can relate the PoS to the output text as:

P(w1,n) = ∑ P(w1,n, t1,n+1) (eqn.2)

 t1,n+1

Where t1,n+1 is a sequence of n+1 parts of speech or simply tags.
This is same as the n parts of speech for n words (extra one is
for the prediction of the PoS for wn+1). Defining the PoS tag-
ging is just finding,

argmax P(t1,n | w1,n) = argmax [P(w1,n,t1,n) / P(w1,n)]

 t1,n t1,n

 = argmax P(w1,n,t1,n) (eqn.3)

 t1,n

where argmaxf(x) is the value of x that maximizes f(x). So our
sole motto is to find a tagging sequence t1,n that maximizes
P(w1,n,t1,n). Now to make a HMM, we need to find out how the
parts of speech are related to the state sequence. There are
many methods for relating the part-of-speech with the states
(Jelinek’s Method, Kupiec’s Method). Taking a simple exam-
ple, let each state of our HMM corresponds to the PoS of the
word produced next. So the probability of a part-of-speech
coming next depends only on the previous part-of-speech.
That is,

P(wn | w1,n-1,t1,n) = P(wn | tn) (eqn.4)

P(tn | w1,n-1,t1,n-1) = P(tn | tn-1) (eqn.5)

Again considering the eqn2,

P(w1,n) = ∑ P(w1,n, t1,n+1)

 t1,n+1

 = ∑ Π P(wi | ti) P(ti+1 | ti) (eqn.6)

 t1,n+1 n

This is our language model equation defining the required
HMM. We used this HMM is used to tag the part of speech.

7.1.2 PoS tagging using Conditional Random Fields
(CRFs)

The joint probability distribution, while using HMMs, p(X,Y)
where X and Y are ranging over the observation sequence and
their corresponding label sequence, must enumerate all possi-
ble observation sequence. This task for most of the cases is in-
tractable. To address this issue, we need a method which can
support the tractable inference with ability to represent data
without making un-warranted independent assumptions.
Both of these property can be satisfied by using a model which
defines a conditional probability p(Y,x) over label sequence
given a particular observation sequence. For a given observa-
tion sequence x* the model selects the label sequence y*, such
that it maximizes conditional probability p(y*, x*).

Considering the case of linear chain CRFs, let G be an undi-
rected graphical model over sets of random variables X and Y,
where,

X = < xi >
Y = < yi >

are sequences of symbols, so that Y is a labeling of an the ob-
served input sequence X. Then, linear-chain CRFs define the
conditional probability of a state sequence given the observed
sequence as

P(Y|X) = (1/Z(X)) * exp(∑ λ(t, yt, X) + µ(t-1, yt-1, yt, X))

 t

where λ(t, yt, X) and µ(t-1, yt-1, yt, X) are potential functions
and Z(X) is a normalization factor over all state sequences X.
A potential function is a real-valued function that captures the
degree to which the assignment yt to the output variable fits
the transition from yt-1 and X. Due to the global normalization
by Z(X), each potential has an influence on the overall proba-
bility.

8 RESULTS OF USING STATISTICAL MODELING

We tested the theory again with the same 100 documents from
Gold Standard Dataset which were used to test the Inductive
Logic Programming approach. The accuracy with Statistical
Modeling increased to 72% as compared to 56% without using
statistical modeling. Using the theory generated, it can be de-
duced by using either HMMs or CRFs to identify which one of
the following tagging sequences is more likely to occur:

1. He[noun] used[verb] a[article] peg[verb], or
2. He[noun] used[verb] a[article] peg[noun]

Now we have the required HMM (or CRF) and an observation

sequence. Thus we can easily find out the most likely state

sequence.

1813

IJSER

International Journal of Scientific & Engineering Research Volume 4, Issue 11, November-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

8.1 Advantage of using CRFs over HMMs

1. Since the HMMs must enumerate all possible obser-
vation sequences, the task for real world application
become in-tractable. While the conditional models de-
fine random variable only on the label sequence for
an observation sequence.

2. HMMs can be used effectively when observation ele-
ments are represented as isolated units, independent
from other elements in an observation sequence. This
holds good for a few data sets but become infeasible
in real world scenario.

3. The conditional nature of CRFs saves effort in model-
ing the observations. CRFs also relax the independent
assumptions required by the HMMs.

9 CONCLUSIONS

 The over-trained system theory generated by the
Aleph algorithm can thus be improved with the use
of Statistical Methods.

 Accuracy of the part-of-speech tagging can be com-
pared in the case of Hidden Markov Models and
Conditional Random Fields.

 Efficiency of other ILP implementations (GOLEM,
Gleaner, Progol) can also be checked.

 Bayesian Logic Programs inherit the advantage of
both Bayesian networks and First order logic, which
both, individually have limitations in some cases.

REFERENCES

[1] L. De Raedt and K. Kersting. Probabilistic Inductive Logic Program-

ming. In Proceedings of the 15th International Conference on Algo-

rithmic Learning Theory (ALT-2004).

[2] M. Goadrich, L. Oliphant, J. Shavlik. Learning to Extract Genic Inter-

actions Using Gleaner. In Proceedings of the 4th Learning Language

in Logic Workshop (LLL05), Bonn, Germany, 2005

[3] Russell, Stuart. , Norvig, Peter. , “Artificial Intelligence-Modern Ap-

proach”, Second Edition, 2004, Pearson Education

[4] Charniak, Eugene. , “Statistical Language Learning”, First Edition,

1996, The MIT Press

[5] Manning, Christopher D. , Schütz, Heinrich. , “Foundations of Statis-

tical Natural Language Processing”, 2002, The MIT Press

[6] William, Brian. , Roy, Nicholas. , 16.410 – Principles of Autonomy

and Decision Making, MIT–Open Course Ware

[7] Wallach Hannah M., “Conditional Random Fields: An introduction”

[8] Kersting, Kristian. De Raedt, Luc, “Bayesian Logic Programming:

Theory and Tool” pp. 20-23

[9] Kersting, Kristian. De Raedt, Luc, “Towards Combining Inductive

Logic Programming with Bayesian Networks”

[10] Ross, Sheldon M. , “Introduction to Probability Models”, Seventh

Edition, John Wiley

Fig. 5. Graphical structures of simple HMMs (left) and the chain-
structured case of CRFs (right). An open circle indicates that the

variable is not generated by the model.

1814

IJSER

