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Abstract— Huge amount of information is hidden within unstructured text. This information is often best exploited in structured or relational 

form, which is suited for many applications including Information Extraction. Information Extraction is the task of automatically extracting 

structured information from a given set of information thus producing a well-defined categorized data from unstructured machine readable 

information. Here, we exploit the idea of integrating Inductive Logic Programming approach and Bayesian Logic Programs for extracting 

information more efficiently. 

Index Terms— Bayesian Logic Programs, Conditional Random Fields, Hidden Markov Models, Inductive Logic Programming, Information 

Extraction, Machine Learning.  

——————————      —————————— 

1 INTRODUCTION                                                                     

O understand the concept of Machine Learning, one must 
understand the idea of Deduction and Induction. Deduc-
tion is basically a system of logic, inference and conclusion 

drawn from examination of facts. These are the conclusions 
drawn from the general domain to the specific domain. While, 
on the other hand, the Induction is the basis of Machine Learn-
ing. It is to induce something from given facts and figures. In 
other words, reasoning from detailed facts to general princi-
ples. We use Inductive Logic Programming which uses logic 
programming as a uniform representation in the form of 
background knowledge and hypothesis. Given a set of posi-
tive examples, negative examples and background knowledge 
of the given domain, the ILP system will generate a theory or a 
set of rules by producing a logic program which covers all the 
positive examples and ignoring the negative examples. Thus, 
Positive examples + Negative Examples + Background 
Knowledge  Hypothesis (Theory). The ability to provide 
Background knowledge to the learning engine is one of the 
strengths of ILP.  

 
ILP approaches usually use languages based on logic pro-

gramming, a subset of “First Order Logic”, which is helpful in 
solving versatile problems having relational characteristics 
between various entities as opposed to propositional logic 
which is declarative, context independent and has limited ex-
pressive power. 

 
Taking an example, suppose we are given the sentence, 

“The water is in the bottle”. In this sentence, the answer to the 
question, when asked to a real person: Where is the water? 
would simply be “In the bottle”. Humans have power to sort 
out the relations between objects (or entities). But we have to 
teach a computer to identify the relations between the entities 
using some additional data. This additional data is the various 
parameters which are inputs to the ILP implementation for 
generating a theory. Based on that theory, a computer can, to a 
great extent, answer whether there is a relation between two 
entities or not. This problem comes under the Information 

Extraction domain of Machine Learning. The program scans 
the input sentence to identify the relevant objects in that sen-
tence and thus producing the relations based on the theory. 
The ILP provides the following features which helps in solv-
ing the problem more efficiently: 

 
 Provides a way to incorporate domain knowledge 
 Produces logical clauses for suitable analysis 
 Helps in Relational learning 

2    PROBLEM STATEMENT 

In a sentence, the question of relation between two words is of 
utter importance. An intelligent system which can, on provid-
ing the test data, tell whether there is existence of any relation 
between the words or not is a challenging task. For instance, 
consider the statement: “He saw a can”. Here, the word ‘can’ 
may refer to a noun or a verb. Since the natural languages are 
ambiguous, the problem of extracting the exact information 
becomes difficult. In this paper, we integrate ILP approach 
with Bayesian Logic Programs and find out how Conditional 
Random Fields have advantage over Hidden Markov Models. 

3 INDUCTIVE LOGIC PROGRAMMING AND ALEPH 

Given an encoding of the known background knowledge and 
a set of examples represented as a logical database of facts, an 
ILP system will derive a hypothesis which entails all the posi-
tive examples and no negative example. Consider a set of ex-
amples E which contains two mutually exclusive sets of posi-
tive examples E+ and negative examples E–. The ILP system 
(Aleph in our case) generates a Hypothesis H which covers 
every example in the set E+ and does not covers any example 
of the set E–. Considering a simple example: 

 
sibling(X, Y)  parent(X, Z), parent(Y, Z) 

 
Now for a machine to understand this relation we must give 
the set of positive and negative examples along with the back-
ground knowledge to the machine which is shown in the fol-
lowing table. 
 
 

T 
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TABLE – 1: ILLUSTRATION OF INPUT TO ILP SYSTEM 

Positive and Negative 

Examples 

Background Knowledge 

sibling(Sam,Mark)                + 

sibling (Jack, Bob)                 + 

sibling (Sam, Jack)                 – 

sibling(Bob, Mark)       – 

sibling (Sam, Bob)                 –  

sibling (Jack, Mark)               –  

parent(Sam, Ana) 

parent(Jack, Alice) 

 

parent(Mark, Ana) 

parent(Bob, Alice) 

 

 
Here ‘+’ denotes the positive examples and ‘–’ denotes the 
negative examples. Aleph is an ILP system developed in 
Prolog. The set of positive examples is presented to this pro-
gram in “.f” file and the set of negative examples in “.n” file in 
a specified format. The background knowledge is presented in 
the “.b” file. The program has internal algorithm which re-
solves the relationship between the determination predicate 
and the determining predicate to generate a general theory. 
For the above example, the body contains predicates: parent 
(X, Y). The concept which needs to be defined is sibling, 
whose positive examples are present in “.f” file and negative 
examples in “.n” file. 

4 APPROACH 

We used the Gold Standard Dataset as the training data. It 
contains huge amount biological data in the form of sentences. 
Our goal is to find out the relation between two words (genes 
in our case) and use those relations to train our system. In the 
dataset, the interactions are given in the form of predicates 
which can easily be identified. The dataset contains infor-
mation including the predicates for word IDs, the syntactic 
relations and the genic Interactions between the words. The 
end of a sentence is recognized by a full stop. The sentences 
are then processed by Genia Tagger to tag the various parts of 
speech. The output of the Genia Tagger is then collected in a 
file which is called the Tagged File.  The tagged file contains 
five columns including the actual word itself, the 1st form of 
the verb of that word and the part of speech (PoS). It also in-
cludes information that whether the word is the starting word 
of a particular phrase or comes in between. For e.g. B-NP 
stands for the word which begins a noun phrase while I-VP 
stands for the verb which is not in the beginning of a verb 
phrase but lies somewhere in between. This tagged file is the 
training data used in the process.  

 
 
 
 
 
 
 
 
 
 
 
 
 

We used Java programming language to generate the re-
quired files: background knowledge (.b), positive examples 
(.p) and negative examples (.n). The processing is divided into 
6 steps which are explained in the next section. The approach 
is illustrated in Figure 1. 

5 FRAMING THE PROBLEM AS AN ILP PROBLEM 

Our training dataset is biological. Various genes interact 
with one another and thus become related. Thus this relation 
becomes the basis for our machine to learn. For our dataset, 
the positive examples are the examples wherein there is an 
interaction between two genes. The negative examples are all 
the interactions which are not positive and not in the same 
phrase and the predicates are the relations possible between 
two words or phrases. Based on these training data, a theory is 
generated by Aleph. The whole process is dived into 6 steps 
which finally generates the Positive Example file (.p file), Neg-
ative Example file (.n file), predicates or background 
knowledge along with the final theory. Following are the 6 
steps: 

Step 1. Standardization of the Tagged file 

The input file is standardized to a file (called the standardized 
file) in which each word of a sentence can be uniquely identi-
fied by an identifier. The identifier is of the form 
sentX_phY_wZ, where X, Y and Z are the sentence number, 
phrase number and word number respectively. For example, 
sent6_ph3_w2 identifies the 2nd word in 3rd phrase of 6th sen-
tence. The index of each sentence, phrase and word starts with 
a zero. There are no identifiers for punctuation marks (open-
ing and closing braces, comma, full stop, hyphen etc.). 
 
Step 2. Syntactic Relations in standardized format 
 
All the syntactic relations from the Gold standard dataset are 
extracted and they are mapped with the standardized tagged 
file to get the syntactic relations between words in standard 
format. 
 
Step 3. Generation of predicates 
 
For an ILP system, we require to encode the background in-
formation into a form which the system can understand and 
process. Predicates are part of such encoding. Few of the pred-
icates are shown in Table 2 and in Figure 2. 
 

TABLE – 2: BACKGROUND KNOWLEDGE OR PREDICATES 

Predicates describing the relations between words and phrases. Words and 

phrases are described using IDs e.g. wID1, pID 

1 
 
2 
 
3 
 
4 
 

5 

word_next(wID1, wID2) 
 
phrase_next(pID1, pID2) 
 
np_segment(pID) 
 
phrase_child(pID, wID) 
 

noun(wID) 

wID2 is next to the word wID1 
 
pID2 is next to the word pID1 
 
pID is a noun phrase 
 
pID contains wID 
 

wID is a noun 

 

 

Fig. 1 Approach 
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Step 4. Positive Example Generation 

A Positive example is a set of two nouns for which the genic 
interaction exists. These examples are listed in the gold stand-
ard dataset as genic_interaction(wID1, wID2). Mapping the 
word ID to the word in the gold standard data set produces 
the positive example file (.f file).  
 
Step 5 and 6. Negative Example Generation 
 
Negative example is a set of two nouns for which genic inter-
action doesn’t exists. Subtracting the positive examples from 
all possible combination of the nouns in the phrases generates 
the negative example file (.n file). 
 
Final Step. Theory Generation Phase 
 
All the files (.p .n and .b) are fed into the ILP system and thus 
generating the theory (figure 3). 
 
 
 
 
 
 
 
 
 
 
 
 

 

6 RESULTS USING INDUCTIVE LOGIC PROGRAMMING 

We tested the theory generated on 100 random documents 
from the Gold Standard Dataset and found that the theory 
generating 56% accurate results. The theory generated might 
not be as much as accurate as we required due to overtraining 

or ambiguity of the natural languages. To get enhanced accu-
racy, we combine Inductive Logic Programming approach 
with Statistical Modeling. 

7 STATISTICAL MODELING TO ENHANCE RESULTS – 

BAYESIAN LOGIC PROGRAMS 

Using the Statistical Methods, we improve the theory generat-
ed in the last phase. Statistical Methods help us in analyzing 
the Syntactic structure of a sentence. Consider the sentence 
“Ram used a peg”. Now we are interested in analyzing the syn-
tactic structure as it helps in determining the meaning. We 
construct a syntactic structure in the form of a tree, tagging 
each part of the sentence with the part of speech. This struc-
ture if formed using a grammar. The system may take the 
word ‘peg’ in the following two ways (also shown in figure 4). 

 
 Noun – a wooden pin 
 Verb – occupying a position 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
To determine the part of speech of ‘peg’ is this sentence statis-
tically, we can model the problem using two approaches of 
Bayesian Logic Programs: Hidden Markov Models (HMMs) 
and Conditional Random Fields (CRFs).  We will use both 
approaches and determine the efficiency of in combination to 
the ILP approach. 

 

7.1 Part of Speech (PoS) tagging 

In the natural language processing, this is the task of labeling 
each word by its part-of-speech tags. This done with assigning 
an appropriate part-of-speech tag along with the original tag 
stored systematically machine readable format. For example, 
 

Ram[Noun] goes[Verb] to[Preposition] college[Noun]. 
 
7.1.1 Part of Speech (PoS) tagging using HMMs 
 
HMMs are a form of generative model, that defines a joint 
probability distribution p(X,Y) where X and Y are random 
variables respectively ranging over observation  sequences 
and their corresponding label sequences. Here, we want to 
develop a HMM that attempts to assign part of speech tags to 
English text. To train a HMM, we will assume that we have a 
large set of training data that is a sequence of words and a 

 

Fig. 2. Background knowledge predicates 

 

 

Fig. 3. Theory Generation Phase showing genic interactions be-
tween words 

 

 

Fig. 4. Two possible ways in which a sentence can be tagged. N: 
noun; V:verb; VP:verb phrase; NP:noun phrase; Art:article; 

S:sentence 
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parallel sequence of part of speech tags. Once the HMM is 
trained, we use it to tag other sentences. Consider a HMM 
with starting state s1. It accepts (or emits) w1 and goes to state 
s2, accepts (or emits) w2 and goes to state s3 and so on. Now 
consider the probability that the sequence w1,n occurs is the 
probability of all possible paths through the HMM that can 
produce this sequence. That is, 
 

P(w1,n) = ∑ P(w1,n, s1,n+1)                  (eqn.1) 

                                                s1,n+1 

 

Using the eqn.1, we can relate the PoS to the output text as:  
 

P(w1,n) = ∑ P(w1,n, t1,n+1)                   (eqn.2) 

                                                t1,n+1 

 
Where t1,n+1 is a sequence of n+1 parts of speech or simply tags. 
This is same as the n parts of speech for n words (extra one is 
for the prediction of the PoS for wn+1). Defining the PoS tag-
ging is just finding, 
 

argmax P(t1,n | w1,n) = argmax [P(w1,n,t1,n) / P(w1,n)] 

   t1,n                                t1,n 

                                 

                                = argmax P(w1,n,t1,n)                        (eqn.3) 

                                      t1,n 

 

where argmaxf(x) is the value of x that maximizes f(x). So our 
sole motto is to find a tagging sequence t1,n that maximizes 
P(w1,n,t1,n). Now to make a HMM, we need to find out how the 
parts of speech are related to the state sequence. There are 
many methods for relating the part-of-speech with the states 
(Jelinek’s Method, Kupiec’s Method). Taking a simple exam-
ple, let each state of our HMM corresponds to the PoS of the 
word produced next. So the probability of a part-of-speech 
coming next depends only on the previous part-of-speech. 
That is, 
 

P(wn | w1,n-1,t1,n) = P(wn | tn)                (eqn.4) 

 

P(tn | w1,n-1,t1,n-1) = P(tn | tn-1)               (eqn.5) 

 

Again considering the eqn2,  
 

P(w1,n) = ∑ P(w1,n, t1,n+1)     

                                              t1,n+1 

 

                                           = ∑ Π P(wi | ti) P(ti+1 | ti)     (eqn.6) 

                                             t1,n+1  n 

 

This is our language model equation defining the required 
HMM. We used this HMM is used to tag the part of speech. 
 
 
 

7.1.2 PoS tagging using Conditional Random Fields 
(CRFs) 
 
The joint probability distribution, while using HMMs, p(X,Y) 
where X and Y are ranging over the observation sequence and 
their corresponding label sequence, must enumerate all possi-
ble observation sequence. This task for most of the cases is in-
tractable. To address this issue, we need a method which can 
support the tractable inference with ability to represent data 
without making un-warranted independent assumptions. 
Both of these property can be satisfied by using a model which 
defines a conditional probability p(Y,x) over label sequence 
given a particular observation sequence. For a given observa-
tion sequence x* the model selects the label sequence y*, such 
that it maximizes conditional probability p(y*, x*). 
 
Considering the case of linear chain CRFs, let G be an undi-
rected graphical model over sets of random variables X and Y, 
where, 

X = < xi > 
Y = < yi > 

 
are sequences of symbols, so that Y is a labeling of an the ob-
served input sequence X. Then, linear-chain CRFs define the 
conditional probability of a state sequence given the observed 
sequence as 
 

P(Y|X) = (1/Z(X)) * exp(∑ λ(t, yt, X) + µ(t-1, yt-1, yt, X)) 

                                                t 

where λ(t, yt, X) and µ(t-1, yt-1, yt, X) are potential functions 
and Z(X) is a normalization factor over all state sequences X. 
A potential function is a real-valued function that captures the 
degree to which the assignment yt to the output variable fits 
the transition from yt-1 and X. Due to the global normalization 
by Z(X), each potential has an influence on the overall proba-
bility. 

8    RESULTS OF USING STATISTICAL MODELING 

We tested the theory again with the same 100 documents from 
Gold Standard Dataset which were used to test the Inductive 
Logic Programming approach. The accuracy with Statistical 
Modeling increased to 72% as compared to 56% without using 
statistical modeling. Using the theory generated, it can be de-
duced by using either HMMs or CRFs to identify which one of 
the following tagging sequences is more likely to occur: 
 

1. He[noun] used[verb] a[article] peg[verb], or  
2. He[noun] used[verb] a[article] peg[noun] 
 

Now we have the required HMM (or CRF) and an observation 

sequence. Thus we can easily find out the most likely state 

sequence. 
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8.1 Advantage of using CRFs over HMMs 
 
 
 
 
 
 
 
 
 
 
 

1. Since the HMMs must enumerate all possible obser-
vation sequences, the task for real world application 
become in-tractable. While the conditional models de-
fine random variable only on the label sequence for 
an observation sequence.  

2. HMMs can be used effectively when observation ele-
ments are represented as isolated units, independent 
from other elements in an observation sequence. This 
holds good for a few data sets but become infeasible 
in real world scenario.  

3. The conditional nature of CRFs saves effort in model-
ing the observations. CRFs also relax the independent 
assumptions required by the HMMs. 

9    CONCLUSIONS 

 The over-trained system theory generated by the 
Aleph algorithm can thus be improved with the use 
of Statistical Methods. 

 Accuracy of the part-of-speech tagging can be com-
pared in the case of Hidden Markov Models and 
Conditional Random Fields. 

 Efficiency of other ILP implementations (GOLEM, 
Gleaner, Progol) can also be checked. 

 Bayesian Logic Programs inherit the advantage of 
both Bayesian networks and First order logic, which 
both, individually have limitations in some cases. 
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Fig. 5. Graphical structures of simple HMMs (left) and the chain-
structured case of CRFs (right). An open circle indicates that the 

variable is not generated by the model. 
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